Aerosolve Spray Adhesive 302, 350g Aerosol AEROSOLVE AUSTRALIA Chemwatch: **4698-60** Version No: 3.1.1.1 Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: 19/03/2019 Print Date: 28/03/2018 L.GHS.AUS.EN # SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING # **Product Identifier** | Product name | Aerosolve Spray Adhesive 302, 350g Aerosol | |-------------------------------|--| | Synonyms | Not Available | | Proper shipping name | AEROSOLS | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Application is by spray atomisation from a hand held aerosol pack
Use according to manufacturer's directions. | |--------------------------|--| | | Spray adhesive for bonding paper, fabric and cardboard. | #### Details of the supplier of the safety data sheet | | , | |-------------------------|--| | Registered company name | AEROSOLVE AUSTRALIA | | Address | 38 INDUSTRIAL DRIVE SUNSHINE WEST VIC 3020 AUSTRALIA | | Telephone | +61 3 9457 1125 (8am-5pm, Monday - Friday) | | Fax | +61 3 9459 7978 | | Website | Not Available | | Email | info@gsbchem.com.au | #### Emergency telephone number | Association / Organisation | Not Available | |-----------------------------------|--| | Emergency telephone numbers | +61 3 9457 1125 (8am-5pm, Monday - Friday) | | Other emergency telephone numbers | 13 11 26 (After hours) | # **SECTION 2 HAZARDS IDENTIFICATION** #### Classification of the substance or mixture # HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. | Poisons Schedule | Not Applicable | |--------------------|---| | Classification [1] | Aerosols Category 1, Gas under Pressure (Compressed gas), Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Carcinogenicity Category 2, Reproductive Toxicity Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Specific target organ toxicity - repeated exposure Category 2, Acute Aquatic Hazard Category 2, Chronic Aquatic Hazard Category 2 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | Label elements Hazard pictogram(s) SIGNAL WORD DANGER # Hazard statement(s) | H222 | Extremely flammable aerosol. | |------|--| | H280 | Contains gas under pressure; may explode if heated. | | H302 | Harmful if swallowed. | | H315 | Causes skin irritation. | | H351 | Suspected of causing cancer. | | H361 | Suspected of damaging fertility or the unborn child. | | H336 | May cause drowsiness or dizziness. | | H373 | May cause damage to organs through prolonged or repeated exposure. | | | • | Page 2 of 14 Issue Date: 19/03/2014 Print Date: 28/03/2018 | H411 | Toxic to aquatic life with long lasting effects. | |--------|--| | AUH044 | Risk of explosion if heated under confinement. | | | | Aerosolve Spray Adhesive 302, 350g Aerosol # Supplementary statement(s) Not Applicable # Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | |------|--| | P210 | Keep away from heat/sparks/open flames/hot surfaces No smoking. | | P211 | Do not spray on an open flame or other ignition source. | | P251 | Pressurized container: Do not pierce or burn, even after use. | | P260 | Do not breathe dust/fume/gas/mist/vapours/spray. | | P271 | Use only outdoors or in a well-ventilated area. | | P281 | Use personal protective equipment as required. | | P270 | Do not eat, drink or smoke when using this product. | | P273 | Avoid release to the environment. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | #### Precautionary statement(s) Response | P308+P313 | IF exposed or concerned: Get medical advice/attention. | |-----------|--| | P362 | Take off contaminated clothing and wash before reuse. | | P391 | Collect spillage. | | P301+P312 | IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | P304+P340 | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | P330 | Rinse mouth. | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | # Precautionary statement(s) Storage | P405 | Store locked up. | |-----------|--| | P410+P403 | Protect from sunlight. Store in a well-ventilated place. | | P410+P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F. | | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | # Precautionary statement(s) Disposal Dispose of contents/container in accordance with local regulations. # **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### Substances See section below for composition of Mixtures # **Mixtures** | CAS No | %[weight] | Name | |---------------|-----------|------------------------| | 75-09-2 | 30-60 | methylene chloride | | Not Available | 30-60 | hydrocarbon solvents | | 68476-85-7. | 10-30 | hydrocarbon propellant | # **SECTION 4 FIRST AID MEASURES** Description of first aid measures If aerosols come in contact with the eyes: ▶ Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. **Eye Contact** ► Transport to hospital or doctor without delay. ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). **Skin Contact** ▶ Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents ▶ Seek medical attention in the event of irritation. If aerosols, fumes or combustion products are inhaled: #### ▶ Remove to fresh air. - Inhalation ► Lay patient down. Keep warm and rested. - Forstheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Chemwatch: 4698-60 Page 3 of 14 Issue Date: 19/03/2014 Version No: 3.1.1.1 Print Date: 28/03/2018 ## Aerosolve Spray Adhesive 302, 350g Aerosol If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. ► Transport to hospital, or doctor. ► Avoid giving milk or oils. ► Avoid giving alcohol. ► Not considered a normal route of entry. #### Indication of any immediate medical attention and special treatment needed For acute or short term repeated exposures to petroleum distillates or related hydrocarbons - Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. - Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhorn and Barceloux: Medical Toxicology] for intoxication due to Freons/ Halons; - A: Emergency and Supportive Measures - Maintain an open airway and assist ventilation if necessary - Treat coma and arrhythmias if they occur. Avoid (adrenaline) epinephrine or other sympathomimetic amines that may precipitate ventricular arrhythmias. Tachyarrhythmias caused by increased myocardial sensitisation may be treated with propranolol, 1-2 mg IV or esmolol 25-100 microgm/kg/min IV. - ▶ Monitor the ECG for 4-6 hours - B: Specific drugs and antidotes: - ▶ There is no specific antidote - C: Decontamination - Inhalation; remove victim from exposure, and give supplemental oxygen if available - Ingestion; (a) Prehospital: Administer activated charcoal, if available. **DO NOT** induce vomiting because of rapid absorption
and the risk of abrupt onset CNS depression. (b) Hospital: Administer activated charcoal, although the efficacy of charcoal is unknown. Perform gastric layage only if the ingestion was very large and recent (less than 30 minutes) - D: Enhanced elimination: - ▶ There is no documented efficacy for diuresis, haemodialysis, haemoperfusion, or repeat-dose charcoal. POISONING and DRUG OVERDOSE, Californian Poison Control System Ed. Kent R Olson; 3rd Edition - ▶ Do not administer sympathomimetic drugs unless absolutely necessary as material may increase myocardial irritability. - No specific antidote. - Because rapid absorption may occur through lungs if aspirated and cause systematic effects, the decision of whether to induce vomiting or not should be made by an attending physician. - If lavage is performed, suggest endotracheal and/or esophageal control. - Danger from lung aspiration must be weighed against toxicity when considering emptying the stomach. - ► Treatment based on judgment of the physician in response to reactions of the patient Treat symptomatically. #### **SECTION 5 FIREFIGHTING MEASURES** # Extinguishing media #### SMALL FIRE: Water spray, dry chemical or CO2 # LARGE FIRE: ▶ Water spray or fog. #### Special hazards arising from the substrate or mixture Fire Fighting Fire/Explosion Hazard Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result # Advice for firefighters - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - If safe, switch off electrical equipment until vapour fire hazard removed. - ▶ Use water delivered as a fine spray to control fire and cool adjacent area - ► DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. If each to do so, remove containers from path of fire. - If safe to do so, remove containers from path of fire. - ► Equipment should be thoroughly decontaminated after use. # Combustion products include: #### carbon dioxide (CO2) - ► Liquid and vapour are highly flammable. - Severe fire hazard when exposed to heat or flame. - Vapour forms an explosive mixture with air. - ▶ Severe explosion hazard, in the form of vapour, when exposed to flame or spark - ▶ Vapour may travel a considerable distance to source of ignition - ▶ Heating may cause expansion or decomposition with violent container rupture. - Aerosol cans may explode on exposure to naked flames. - ► Rupturing containers may rocket and scatter burning materials. - Hazards may not be restricted to pressure effects. - May emit acrid, poisonous or corrosive fumes. - ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). carbon monoxide (CO) , hydrogen chloride , phosgene Chemwatch: 4698-60 Page 4 of 14 Issue Date: 19/03/2014 Version No: 3.1.1.1 Print Date: 28/03/2018 # Aerosolve Spray Adhesive 302, 350g Aerosol other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. May emit clouds of acrid smoke HAZCHEM 2Y # **SECTION 6 ACCIDENTAL RELEASE MEASURES** # Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | Minor Spills M | Methods and material for containment and cleaning up | | | |---|--|--|--| | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. | Minor Spills | Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. | | | Undamaged cans should be gathered and stowed safely. Collect residues and seal in labelled drums for disposal. Remove leaking cylinders to a safe place if possible. Release pressure under safe, controlled conditions by opening the valve. | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. Collect residues and seal in labelled drums for disposal. Remove leaking cylinders to a safe place if possible. | | Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 HANDLING AND STORAGE** # Precautions for safe handling | Safe handling | DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. DO NOT incinerate or puncture aerosol cans. DO NOT spray directly on humans, exposed food or food utensils. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked
against established exposure standards to ensure safe working conditions are maintained. | |-------------------|---| | Other information | Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can Store in original containers in approved flammable liquid storage area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. No smoking, naked lights, heat or ignition sources. Keep containers securely sealed. Contents under pressure. Store away from incompatible materials. Store in a cool, dry, well ventilated area. Avoid storage at temperatures higher than 40 deg C. Store in an upright position. Protect containers against physical damage. Check regularly for spills and leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. | # Conditions for safe storage, including any incompatibilities ▶ DO NOT use aluminium or galvanised containers ► Aerosol dispenser. Suitable container ► Check that containers are clearly labelled. #### Aerosolve Spray Adhesive 302, 350g Aerosol Print Date: 28/03/2018 Segregate from: ▶ powdered metals such as aluminium. zinc and ▶ alkali metals such as sodium, potassium and lithium. May attack, soften or dissolve rubber, many plastics, paints and coatings Storage incompatibility Segregate from alcohol, water. - Avoid reaction with oxidising agents - ► Avoid strong acids, acid chlorides, acid anhydrides and chloroformates # **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### Control parameters #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|------------------------|-------------------------------|-----------------------|---------------|---------------|---------------| | Australia Exposure Standards | methylene chloride | Methylene chloride | 174 mg/m3 / 50 ppm | Not Available | Not Available | Not Available | | Australia Exposure Standards | hydrocarbon propellant | LPG (liquified petroleum gas) | 1800 mg/m3 / 1000 ppm | Not Available | Not Available | Not Available | #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |------------------------|---------------------------------------|---------------|---------------|---------------| | methylene chloride | Methylene chloride; (Dichloromethane) | Not Available | Not Available | Not Available | | hydrocarbon propellant | Liquified petroleum gas; (L.P.G.) | 65,000 ppm | 2.30E+05 ppm | 4.00E+05 ppm | | Ingredient | Original IDLH | Revised IDLH | |------------------------|-----------------|---------------| | methylene chloride | 2000 ppm | Not Available | | hydrocarbon solvents | Not Available | Not Available | | hydrocarbon propellant | 2,000 [LEL] ppm | Not Available | #### MATERIAL DATA For liquefied petroleum gases (LPG): TLV TWA: 1000 ppm, 1800 mg/m3 (as LPG) ES TWA: 1000 ppm, 1800 mg/m3 (as LPG) OES TWA: 1000 ppm, 1750 mg/m3; STEL: 1250 ppm, 2180 mg/m3 (as LPG) IDLH Level: 2000 ppm (lower explosive limit) No chronic systemic effects have been reported from occupational exposure to LPG. The TLV-TWA is based on good hygiene practices and is thought to minimise the risk of fire or explosion. Odour Safety Factor(OSF) OSF=0.16 (hydrocarbon propellant) For methylene chloride Odour Threshold Value: 158 ppm (detection), 227 ppm (recognition) NOTE: Detector tubes for methylene chloride, measuring in excess of 25 ppm are commercially available. Long-term measurements (4 hrs) may be conducted to detect concentrations exceeding 13 ppm. Exposure at or below the recommended TLV-TWA (and in the absence of occupational exposure to carbon monoxide) is thought to minimise the potential for liver injury and to provide protection against the possible weak carcinogenic effects which have been demonstrated in laboratory rats and mice. Enhancement of tumours of the lung, liver, salivary glands and mammary tissue in rodent studies has lead NIOSH to recommend a more conservative outcome. The ACGIH however concludes that in the absence of documentation of health-related injuries at higher exposures after a long history of methylene chloride use and a number of epidemiologic studies, the recommended TLV-TWA provides an adequate margin of safety. Concentration effects: Concentration Clinical effects >300 ppm Sweet odour 500-1000 ppm (1-2 h) Unpleasant odour, slight anaesthetic effects, headache, light-headedness, eye irritation and elevated COHb concentration 2300 ppm (5 min.) Odour strong, intensely irritating; dizziness 7200 ppm (8-16 min) Paraesthesia, tachycardia >50000 ppm Immediately life-threatening for alkanes (C5-C8) CEL TWA: 350 mg/m3 (10 hours); STEL: 1800 mg/m3 (15 minutes) - NIOSH (CEL=Chemwatch Exposure Limit) for heptane (all isomers) The TLV-TWA is protective against narcotic and irritant effects which are greater than those of pentane or n-hexane but less than those of octane. The TLV-TWA applies to all isomers. Inhalation by humans of 1000 ppm for 6 minutes produced slight dizziness. Higher concentrations for shorter periods produce marked vertigo, incoordination and hilarity. Signs of central nervous system depression occur in the absence of mucous membrane irritation. Brief exposures to high levels (5000 ppm for 4 minutes) produce nausea, loss of appetite and a "gasoline-like" taste in the mouth that persists for many hours after exposure ceases for: hexane, isomers (excluding n-hexane) The TLV-TWA is thought to be protective against nausea, headache, upper respiratory tract irritation and CNS depression. The STEL is added to prevent objective depression of the CNS. The lower value ascribed to n-hexane is due to the neurotoxicity of its metabolites, principally 5-hydroxy-2-hexanone and 2,5-hexanedione. It is considered unlikely that other hexanes follow the same metabolic route. It should be noted however that the n-hexane TLV-TWA also applies to commercial hexane having a concentration of greater than 5% n-hexane. For n-hexane Odour Threshold Value: 65 ppm NOTE: Detector tubes for n-hexane, measuring in excess of 100 ppm, are available commercially. Occupational polyneuropathy may result from exposures as low as 500 ppm (as hexane), whilst nearly continuous exposures of 250 ppm have caused neurotoxic effects in animals. Many literature reports have failed to distinguish hexane from n-hexane and on the assumption that the commercial hexane contains 30% n-hexane, a worst case recommendation for TLV is assumed to reduce the risk of peripheral neuropathies (due to the metabolites 2,5-heptanedione and 3,6-octanedione) and other adverse neuropathic effects Concurrent exposure to chemicals (including MEK) and drugs which induce hepatic liver oxidative metabolism can reduce the time for neuropathy to appear. Odour Safety Factor(OSF) OSF=0.15 (n-HEXANE) NOTE K: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.1%w/w 1,3-butadiene (EINECS No 203-450-8). - European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP Version No: 3.1.1.1 #### Aerosolve Spray Adhesive 302, 350g Aerosol Issue Date: 19/03/2014 Print Date: 28/03/2018 Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. #### Appropriate engineering controls | Type of Contaminant: |
Speed: | |---|----------------------------| | aerosols, (released at low velocity into zone of active generation) | 0.5-1 m/s | | direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or #### Personal protection # Eye and face protection No special equipment for minor exposure i.e. when handling small quantities. OTHERWISE: For potentially moderate or heavy exposures - Safety glasses with side shields. - ▶ NOTE: Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them. # Skin protection See Hand protection below ## Hands/feet protection - ▶ No special equipment needed when handling small quantities. - ▶ OTHERWISE: - For potentially moderate exposures: - ▶ Wear general protective gloves, eg. light weight rubber gloves. - For potentially heavy exposures: - ▶ Wear chemical protective gloves, eg. PVC. and safety footwear. ## **Body protection** See Other protection below No special equipment needed when handling small quantities. #### OTHERWISE: - Overalls - ► Skin cleansing cream. #### Other protection - Eyewash unit. - ► Do not spray on hot surfaces. - The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton. - ▶ Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost. BRETHERICK: Handbook of Reactive Chemical Hazards. # Thermal hazards Not Available # Recommended material(s) # **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: # "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computergenerated selection: Aerosolve Spray Adhesive 302, 350g Aerosol | Material | CPI | |----------------|-----| | BUTYL | С | | CPE | С | | HYPALON | С | | NATURAL RUBBER | С | | NEOPRENE | С | # Respiratory protection Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|---------------------------| | up to 5 x ES | AX-AUS / Class
1 | - | AX-PAPR-AUS /
Class 1 | | up to 25 x ES | Air-line* | AX-2 | AX-PAPR-2 | | up to 50 x ES | - | AX-3 | - | | 50+ x ES | - | Air-line** | - | Version No: 3.1.1.1 Aerosolve Sprav Adhesive 302, 350g Aerosol | 7101000110 | opiay | 7101100170 | , 002, | ooog | , 101 | |------------|-------|------------|------------------------|------|--------| | | С | | - Full-fac | | raonia | | | С | | (All class
/anide(H | , | - | | 1 | |---| | С | | С | | С | | С | | С | | С | | С | | С | | С | | С | | С | | | ^{*} CPI - Chemwatch Performance Index NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - ic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) Issue Date: 19/03/2014 Print Date: 28/03/2018 Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. # **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** # Information on basic physical and chemical properties | Appearance | Supplied as an aerosol pack. Contents under PRESSURE. Contains highly flammable hydrocarbon propellant. Clear / white liquid / spray; not miscible with water. | | | |--|--|---|----------------| | Physical state | Liquid | 0.85 | | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | -30 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | HIGHLY FLAMMABLE. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 7.5 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 1.2 | Volatile Component (%vol) | 90 approx | | Vapour pressure (kPa) | 379 | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Applicable | | Vapour density (Air = 1) | Not Available | VOC g/L | 816.35 | ### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 TOXICOLOGICAL INFORMATION** # Information on toxicological effects Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. #### Inhaled Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion ^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. Chemwatch: 4698-60 Page 8 of 14 Issue Date: 19/03/2014 Version No: 3.1.1.1 # Aerosolve Spray Adhesive 302, 350g Aerosol Print Date: 28/03/2018 following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Common, generalised symptoms associated with toxic gas inhalation include: - rentral nervous system effects such as depression, headache, confusion, dizziness, progressive stupor, coma and seizures; - respiratory system complications may include acute pulmonary oedema, dyspnoea,
stridor, tachypnoea, bronchospasm, wheezing and other reactive airway symptoms, and respiratory arrest: - cardiovascular effects may include cardiovascular collapse, arrhythmias and cardiac arrest; - pastrointestinal effects may also be present and may include mucous membrane irritation, nausea and vomiting (sometimes bloody), and abdominal pain. Inhalation hazard is increased at higher temperatures. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. WARNING: Intentional misuse by concentrating/inhaling contents may be lethal High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations. Acute intoxication by halogenated aliphatic hydrocarbons appears to take place over two stages. Signs of a reversible narcosis are evident in the first stage and in the second stage signs of injury to organs may become evident, a single organ alone is (almost) never involved. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious Inhalation exposure may cause susceptible individuals to show change in heart beat rhythm i.e. cardiac arrhythmia. Exposures must be terminated. damage to the health of the individual. Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary gedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cvanosis). Ingestion of petroleum hydrocarbons may produce irritation of the pharynx, oesophagus, stomach and small intestine with oedema and mucosal ulceration resulting; symptoms include a burning sensation in the mouth and throat. Large amounts may produce narcosis with nausea and vomiting, weakness or dizziness, slow and shallow respiration, swelling of the abdomen, unconsciousness and convulsions. Myocardial injury may produce arrhythmias, ventricular fibrillation and electrocardiographic changes. Central nervous system depression may also occur. Light aromatic hydrocarbons produce a warm, sharp, tingling sensation on contact with taste buds and may anaesthetise the tongue. Aspiration into the lungs may produce coughing, gagging and a chemical pneumonitis with pulmonary oedema and haemorrhage. Ingestion The material produces severe skin irritation; evidence exists, or practical experience predicts, that the material either: - produces severe inflammation of the skin in a substantial number of individuals following direct contact, and/or - roduces significant and severe inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. - ▶ Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the # Skin Contact NOTE: Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Spray mist may produce discomfort Open cuts, abraded or irritated skin should not be exposed to this material Aromatic hydrocarbons may produce skin irritation, vasodilation with erythema and changes in endothelial cell permeability. Systemic intoxication, resulting from contact with the light aromatics, is unlikely due to the slow rate of permeation. Branching of the side chain appears to increase percutaneous absorption # Eve Limited evidence or practical experience suggests, that the material may cause moderate eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged exposure may cause moderate inflammation (similar to windburn) characterised by a temporary redness of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation Petroleum hydrocarbons may produce pain after direct contact with the eyes. Slight, but transient disturbances of the corneal epithelium may also result. The aromatic fraction may produce irritation and lachrymation. On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. #### Chronic Exposure to the material may cause concerns for humans owing to possible developmental toxic effects, generally on the basis that results in appropriate animal studies provide strong suspicion of developmental toxicity in the absence of signs of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not a secondary non-specific consequence of other toxic effects Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems Chemwatch: 4698-60 Page 9 of 14 Issue Date: 19/03/2014 Version No: 3.1.1.1 Print Date: 28/03/2018 ## Aerosolve Spray Adhesive 302, 350g Aerosol There is some evidence to provide a presumption that human exposure to the material may result in impaired fertility on the basis of: some evidence in animal studies of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects but which is not a secondary non-specific consequence of other toxic effects. Principal route of occupational exposure to the gas is by inhalation. Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One
epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding. Methylene chloride exposures cause liver and kidney damage in animals and this justifies consideration before exposing persons with a history of impaired liver function and/or renal disorders. Chronic exposure may produce central nervous system damage including confusion, delusions, slurred speech, memory impairment, anxiety, focal seizures, encephalopathy and visual and auditory hallucinations. These effects are probably due to chronic carbon monoxide poisoning resulting from methylene chloride metabolism. Two epidemiological studies of workers exposed to methylene chloride have been published. An excess in pancreatic tumours was noted in one study. Chronic exposure to methylene chloride (approximately 30-120 ppm TWA) did not appear to increase the risk of deaths arising from lung cancer or cardiovascular disease. A study from Zeneca's Central Toxicology Laboratory added further support to the claim that solvent methylene chloride is not a human carcinogen. This study supported a previous finding by the European Centre of Ecology and Toxicology (ECETOC) that methylene chloride induced-cancers, previously identified in mice, were a consequence of a unique metabolic pathway found only in mice. | Aerosolve Spray Adhesive 302, | TOXICITY | IRRITATION | |-------------------------------|--|------------------------------------| | 350g Aerosol | Not Available | Not Available | | | TOXICITY | IRRITATION | | | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye(rabbit): 162 mg - moderate | | methylene chloride | Inhalation (rat) LC50: 76 mg/l/4H ^[2] | Eye(rabbit): 500 mg/24hr - mild | | | Oral (rat) LD50: 985 mg/kg ^[2] | Skin (rabbit): 100mg/24hr-moderate | | | | Skin (rabbit): 810 mg/24hr-SEVERE | | | TOXICITY | IRRITATION | | hydrocarbon propellant | Inhalation (rat) LC50: 84.684 mg/l15 min ^[1] | Not Available | | | Inhalation (rat) LC50: 90.171125 mg/l15 min ^[1] | | Legend: Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances # METHYLENE CHLORIDE **WARNING:** This substance has been classified by the IARC as Group 2A: Probably Carcinogenic to Humans. Inhalation (human) TCLo: 500 ppm/ 1 y - I Eye(rabbit): 10 mg - mild for Petroleum Hydrocarbon Gases: In many cases, there is more than one potentially toxic constituent in a refinery gas. In those cases, the constituent that is most toxic for a particular endpoint in an individual refinery stream is used to characterize the endpoint hazard for that stream. The hazard potential for each mammalian endpoint for each of the petroleum hydrocarbon gases is dependent upon each petroleum hydrocarbon gas on stituent endpoint toxicity values (LC50, LOAEL, etc.) and the relative concentration of the constituent present in that gas. It should also be noted that for an individual petroleum hydrocarbon gas, the constituent characterizing toxicity may be different for different mammalian endpoints, again, being dependent upon the concentration of the different constituents in each, distinct petroleum hydrocarbon gas. All Hydrocarbon Gases Category members contain primarily hydrocarbons (i.e., alkanes and alkenes) and occasionally asphyxiant gases like hydrogen. The inorganic components of the petroleum hydrocarbon gases are less toxic than the C1 - C4 and C5 - C6 hydrocarbon components to both mammalian and aquatic organisms. Unlike other petroleum product categories (e.g. gasoline, diesel fuel, lubricating oils, etc.), the inorganic and hydrocarbon constituents of hydrocarbon gases can be evaluated for hazard individually to then predict the screening level hazard of the Category members Acute toxicity: No acute toxicity LC50 values have been derived for the C1 -C4 and C5- C6 hydrocarbon (HC) fractions because no mortality was observed at the highest exposure levels tested (~ 5 mg/l) for these petroleum hydrocarbon gas constituents. The order of acute toxicity of petroleum hydrocarbon gas constituents from most to least toxic is: C5-C6 HCs (LC50 > 1063 ppm) > C1-C4 HCs (LC50 > 10,000 ppm) > benzene (LC50 = 13,700 ppm) > butadiene (LC50 = 129,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen). # HYDROCARBON PROPELLANT Repeat dose toxicity: With the exception of the asphyxiant gases, repeated dose toxicity has been observed in individual selected petroleum hydrocarbon gas constituents. Based upon LOAEL values, the order of order of repeated-dose toxicity of these constituents from most toxic to the least toxic is: Benzene (LOAEL .>=10 ppm) > C1-C4 HCs (LOAEL = 5,000 ppm; assumed to be 100% 2-butene) > C5-C6 HCs (LOAEL = 6,625 ppm) > butadiene (LOAEL = 8,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen). #### Genotoxicity: *In vitro:* The majority of the Petroleum Hydrocarbon Gases Category components are negative for *in vitro* genotoxicity. The exceptions are: benzene and 1,3-butadiene, which are genotoxic in bacterial and mammalian *in vitro* test systems. *In vivo:* The majority of the Petroleum Hydrocarbon Gases Category components are negative for *in vivo* genotoxicity. The exceptions are benzene and 1,3-butadiene, which are genotoxic in *in vivo* test systems **Developmental toxicity:** Developmental effects were induced by two of the petroleum hydrocarbon gas constituents, benzene and the C5 -C6 hydrocarbon fraction. No developmental toxicity was observed at the highest exposure levels tested for the other petroleum hydrocarbon gas constituents tested for this effect. The asphyxiant gases have not been tested for developmental toxicity. Based on LOAEL and NOAEL values, the order of acute toxicity of these constituents from most to least toxic is: Benzene (LOAEL = 20 ppm) > butadiene (NOAEL .>=1,000 ppm) > C5-C6 HCs (LOAEL = 3,463 ppm) > C1-C4 HCs (NOAEL >=5,000 ppm; assumed to be 100% 2-butene) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen). Reproductive toxicity: Reproductive effects were induced by only two petroleum hydrocarbon gas constituents, benzene and isobutane (a constituent of the the C1-C4 hydrocarbon fraction). No reproductive toxicity was observed at the highest exposure levels tested for the other petroleum hydrocarbon gas constituents tested for this effect. The asphyxiant gases have not been tested for reproductive toxicity. Based on LOAEL and NOAEL values, the order of Chemwatch: 4698-60 Page 10 of 14 Issue Date: 19/03/2014 Version No: 3.1.1.1 Print Date: 28/03/2018 ## Aerosolve Spray Adhesive 302, 350g Aerosol reproductive toxicity of these constituents from most to least toxic is: Benzene (LOAEL = 300 ppm) > butadiene (NOAEL .>=6,000 ppm) > C5-C6 HCs (NOAEL .>=6,521 ppm) > C1-C4 HCs (LOAEL = 9,000 ppm; assumed to be 100% isobutane) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen) Aerosolve Spray Adhesive 302, 350g Aerosol & No significant acute toxicological data identified in literature search. HYDROCARBON **PROPELLANT** Aerosolve Spray Adhesive 302, 350g Aerosol & METHYLENE CHLORIDE Aerosolve Spray Adhesive 302, 350g Aerosol & METHYLENE The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. CHLORIDE The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of Aerosolve Spray Adhesive 302, dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. 350g Aerosol & METHYLENE Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, CHLORIDE given the severity of response, but repeated exposures may produce severe ulceration. **Acute Toxicity** Carcinogenicity v Skin Irritation/Corrosion Reproductivity 0 STOT - Single Exposure v Serious Eye Damage/Irritation Respiratory or Skin 0 STOT - Repeated Exposure J sensitisation 0 0 Mutagenicity **Aspiration Hazard** Legend: ★ - Data available but does not fill the criteria for classification Data available to make classification N - Data Not Available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** #### Toxicity | Aerosolve Spray Adhesive 302,
350g Aerosol | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |---|------------------|--------------------|-------------------------------|----------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | =13.1mg/L | 1 | | methylene chloride | EC50 | 48 | Crustacea | Crustacea =108.5mg/L | | | | EC50 | 72 | Algae or other aquatic plants | 242mg/L | 4 | | | NOEC | 96 | Algae or other aquatic plants | 56mg/L | 4 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | hydrocarbon propellant | Not
Available | Not Available | Not Available | Not
Available | Not
Available | (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate
water when cleaning equipment or disposing of equipment wash-waters Wastes resulting from use of the product must be disposed of on site or at approved waste sites. for Petroleum Hydrocarbon Gases: #### Environmental fate: The environmental fate characteristics of petroleum hydrocarbon gases are governed by these physical-chemical attributes. All components of these gases will partition to the air where interaction with hydroxyl radicals is an important fate process. Hydrocarbons having molecular weights represented in these streams are inherently biodegradable, but their tendency to partition to the atmosphere would prevent their biotic degradation in water and soils. However, if higher molecular weight fractions of these streams enter the aquatic or terrestrial environment, biodegradation may be an important fate mechanism The majority of components making up hydrocarbon gases typically have low melting and boiling points. They also have high vapor pressures and low octanol/water partition coefficients. The aqueous solubilities of these substances vary, and range from approximately 22 parts per million to several hundred parts per million. The environmental fate characteristics of refinery gases are governed by these physical-chemical attributes. Components of the hydrocarbon gas streams will partition to the air, and photodegradation reactions will be an important fate process for many of the hydrocarbon components. The hydrocarbons in these mixtures are inherently biodegradable, but due to their tendency to partition to the atmosphere, biodegradation is not anticipated to be an important fate mechanisms. However, if released to water or soil, some of the higher molecular weight fractions may become available for microbial attack. The inorganic gases are chemically stable and may be lost to the atmosphere or simply become involved in the environmental recycling of their atoms. Some show substantial water solubility, but their volatility eventually causes these gases to enter the atmosphere. Substances in Refinery Gases that volatilise to air may undergo a gas-phase oxidation reaction with photochemically produced hydroxyl radicals (OH-). Atmospheric oxidation as a result of hydroxyl radical attack is not direct photochemical degradation, but rather indirect degradation Indirect photodegradation of the hydrocarbon components in Refinery Gases can be an important fate process for these constituents. In general, half lives decrease with increasing carbon chain length. Half lives for this fraction of Refinery Gases ranged from 960 days (methane) to 0.16 days (butadiene). The constituents of the C5- C6 hydrocarbon fraction have photodegradation half-lives of approximately two days. The hydrocarbon and non-hydrocarbon constituents in Refinery Gases do not contain the functional groups or chemical linkages known to undergo hydrolysis reactions. Therefore hydrolysis will not play an important role in the environmental fate for the components in Refinery Gas streams. Biodegradation of the hydrocarbon components in refinery gases may occur in soil and water. Gaseous hydrocarbons are widespread in nature and numerous types of microbes have evolved which are capable of oxidizing these substances as their sole energy source. Although volatilization is the predominant behavior for these gases, sufficient aqueous solubility and bioavailability is exhibited by these compounds. The use of gaseous carbon sources for cell growth is common among autotrophic organisms . Higher chain length hydrocarbons typical of naphtha streams also are known to inherently biodegrade in the environment Chemwatch: 4698-60 Page 11 of 14 Issue Date: 19/03/2014 Version No: 3.1.1.1 Print Date: 28/03/2018 #### Aerosolve Spray Adhesive 302, 350g Aerosol #### Ecotoxicity: Acute LC/EC50 values for the hydrocarbon components of these gas streams ranged roughly from 1 to 100 mg/L. Although the LC/EC50 data for the individual gases illustrate the potential toxicity to aquatic organisms, aqueous concentrations from releases of these gases would likely not persist in the aquatic environment for a sufficient duration to elicit toxicity. Based on a simple conceptual exposure model analysis, emissions of petroleum hydrocarbon gases to the atmosphere would not likely result in acutely toxic concentrations in adiacent water bodies because such emissions will tend to remain in the atmosphere. Several of the constituents in refinery gases were shown to be highly hazardous to aquatic organisms in laboratory toxicity tests where exposure concentrations can be maintained over time. Hydrogen sulfide was shown to be the most toxic constituent to fish (LC50 ranged 0.007 to 0.2 mg/L) and invertebrates (EC50 ranged 0.022 to 1.07 mg/L), although several LC/EC50 values for ammonia also were below 1 mg/l for these organisms (0.083 to 4.6 mg/L and 0.53 to 22.8 mg/L, respectively). For methylene chloride: log Kow: 1.25 log Koc: 1.68 log Kom: 1.44 Henry's atm m3 /mol: 2.68E-03 BCF: 5 #### **Environmental fate:** Methylene chloride is a volatile liquid, and tends to volatilise to the atmosphere from water and soil. The half-life of methylene chloride volatilisation from water has been found to be 21 minutes under experimental conditions but actual volatilisation from natural waters will depend on the rate of mixing, wind speed, temperature, and other factors. The Henry's law constant value (H) of 0.002 atm/m3/mol indicates that methylene chloride will volatilise rapidly from moist soil and water surfaces. Methylene chloride is not strongly sorbed to soils or sediments. Based on its low soil organic carbon partitioning coefficient (Koc) of 25, methylene chloride is likely to be very highly mobile in soils and may be expected to leach from soils into groundwater. Based on a reported log octanol/water partition coefficient (Kow) of 1.3 an estimated bioconcentration factor (BCF) of 2.3 was derived. There is no evidence of biomagnification, but because the estimated BCF is low, significant biomagnification of methylene chloride in aquatic food chains is not expected. Air: The main degradation pathway for methylene chloride in air is its reaction with photochemically generated hydroxyl radicals. Thus, the atmospheric lifetime of methylene chloride may be predicted from the hydroxyl radical concentration in air and the rate of reaction. Most reported rates for hydroxyl radical reaction with methylene chloride range from 1.0 x10-13 to 1.5 x10-13 cm3/mol/sec, and estimates of average atmospheric hydroxyl radical concentration range from 2.5 x10+5 to 1x10+6 mol/cm3 Using this information, an average atmospheric lifetime for methylene chloride may be calculated to be 130 days. Because this degradation pathway is relatively slow, methylene chloride may become widely dispersed but is not likely to accumulate in the atmosphere. The small amount of methylene chloride with ozone or other common atmospheric species (e.g., oxygen atoms, chlorine atoms, and nitrate radicals) are not believed to contribute to its breakdown. Water: Methylene chloride undergoes slow hydrolysis in water. The experimental half-life reported for the hydrolysis reaction, at neutral conditions, is approximately 18 months at 25 C. However, the rate of reaction varies greatly with changes in temperature and pH. A hydrolytic half-life of 14 days was reported for methylene chloride in acidic solutions at 80-150 C. This experimental value, when extrapolated to 25 C, is about 700 years. Different mechanisms of hydrolyses may be responsible for these two widely different values. Both aerobic and anaerobic biodegradation may be an important fate process for methylene chloride in water. Methylene chloride has been observed to undergo degradation at a rapid rate under aerobic conditions. Reported total methylene chloride loss was 100% after 7 days in a static culture flask biodegradability screening test. Sediment and Soil: The rate of biodegradation was found to be dependent on soil type, substrate concentration, and redox state of the soil. Methylene chloride biodegradation has been reported to occur under both aerobic conditions and anaerobic conditions. The biodegradation of methylene chloride appears to be accelerated by the presence of elevated levels of organic carbon. Methylene chloride has a low tendency to absorb to soil; therefore, there is a potential for leaching to groundwater. Also, because of the high vapor pressure, volatilisation to air is also a likely fate process from dry soil. Its high Henry's law constant (0.002 atm/m3/mol) indicates that volatilization from moist soil is also likely. For n-heptane: log Kow: 4.66 Koc: 2400-8100 Half-life (hr) air: 52.8 Half-life (hr) H2O surface water : 2.9-312 Henry's atm m3 /mol: 2.06 BOD 5 if unstated: 1.92 COD : 0.06 BCF : 340-2000 # log BCF: 2.53-3.31 Environmental fate: Photolysis or hydrolysis of n-heptane are not expected to be important environmental fate processes. Biodegradation of n-heptane may occur in soil and water, however volatilisation and adsorption are expected to be more important fate processes. A high Koc (2400-8200) indicates n-heptane will be slightly mobile to immobile in soil. In aquatic systems n-heptane may partition from the water column to organic matter in sediments and suspended solids. The bioconcentration of n-heptane may be important in aquatic environments. the Henry's Law constant suggests rapid volatilisation from environmental waters and surface soils. The volatilisation half-lives from a model river and a model pond (the latter considers the effect of adsorption) have been estimated to be 2.9 hr and 13 days, respectively. n-Heptane is expected to exist entirely in the vapour phase in ambient air. Reactions with photochemically produced hydroxyl radicals in the atmosphere have been shown to be important (estimated half-life of 2.4 days calculated from its rate constant of 7.15x10-12 cu cm/molecule-sec at 25 deg C). Data also suggests
that night-time reactions with nitrate radicals may contribute to the atmospheric transformation of n-heptane, especially in urban environments. n-Heptane does not contain chromophores that absorb at wavelengths >290 nm and therefore is not expected to be susceptible to direct photolysis by sunlight An estimated BCF of 2,000 using log Kow suggests the potential for bioconcentration in aquatic organisms is very high. Based on 100% degradation after 4 days in water inoculated with gasoline contaminated soil and 100% degradation after 25 days in water inoculated with activated sewage sludge, biodegradation is expected to be an important fate process for n-heptane in water. #### Ecotoxicity: Fish LC50 (48 h): goldfish (Carrasius auratus) 4 mg/l; golden orfe (Idus melanotus) 2940 mg/l; western mosquitofish (Gambusia affinis) 4924 mg/l Daphnia LC50 (24 h): >10 mg/l Daphnia EC50 (96 h): 82 mg/l (immobilisation) Opposum shrimp (Mysidopsis bahia) LC50 (96 h): 0.1 mg/l Snail EC50 (96 h): 472 mg/l For n-hexane: log Kow: 3.17-3.94 BOD 5 if unstated: 2.21 COD: 0.04 ThOD: 3.52 #### **Environmental fate:** **Transport and Partitioning:** The physical properties of *n*-hexane that affect its transport and partitioning in the environment are: water solubility of 9.5 mg/L; log[Kow] (octanol/water partition coefficient), estimated as 3.29; Henry's law constant, 1.69 atm-m3 mol; vapor pressure, 150 mm Hg at 25 C; and log[Koc] in the range of 2.90 to 3.61. As with many alkanes, experimental methods for the estimation of the Koc parameter are lacking, so that estimates must be made based on theoretical considerations. The dominant transport process from water is volatilization. Based on mathematical models the half-life for *n*-hexane in bodies of water with any degree of turbulent mixing (e.g., rivers) would be less than 3 hours. For standing bodies of water (e.g. small ponds), a half-life no longer than one week (6.8 days) is estimated Based on the log octanol/water partition coefficient (i.e. log[Koc]) and the estimated log sorption coefficient (i.e. log[Koc]) *n*-hexane is not expected to become concentrated in biota. A calculated bioconcentration factor (BCF) of 453 for a fathead minnow further suggests a low potential for *n*-hexane to bioconcentrate or bioaccumulate in trophic food chains. In soil, the dominant transport mechanism for *n*-hexane present near the surface probably is volatilisation (based on its Henry's law constant, water solubility, vapor pressure, and Koc). While its estimated Koc values suggest a moderate ability to sorb to soil particles, *n*-hexane has a density (0.6603 g/mL at 20 C) well below that of water and a very low water solubility of 9.5 mg/L. *n*-Hexane would, therefore, be viewed as a light nonaqueous phase liquid (LNAPL), which would suggest a low potential for leaching into the lower soil depths since the *n*-hexane would tend to float on the top of the saturated zone of the water table. *n*-Hexane would generally stay near the soil surface and, if not appreciably sorbed into the soil matrix, would be expected eventually to volatilise to the atmosphere. Exceptions would involve locations with shallow groundwater tables where there were large spills of hexane products. In such cases, the *n*-hexane could spread out to contaminant a large volume of soil materials. Air: n-Hexane does not absorb ultraviolet (UV) light at 290 nm and is thus not expected to undergo direct photolysis reactions. The dominant tropospheric removal mechanism for n-hexane is generally regarded to be decomposition by hydroxyl radicals. Calculations assuming typical hydroxyl radical concentrations suggest a half-life of approximately 2.9 days. While n-hexane can react with nitrogen oxides to produce ozone precursors under controlled laboratory conditions, the smog-producing potential of n-hexane is very low compared to that of other alkanes or chlorinated VOCs. Hydroxyl ion reactions in the upper troposphere, therefore, are probably the primary mechanisms for n-hexane degradation in the atmosphere. As with most alkanes, n-hexane is resistant to Chemwatch: 4698-60 Page 12 of 14 Version No: 3.1.1.1 Aerosolve Spray Adhesive 302, 350g Aerosol Issue Date: 19/03/2014 Print Date: 28/03/2018 #### hvdrolvsis Water: Although few data are available dealing explicitly with the biodegradation of n-hexane in water, neither hydrolysis nor biodegradation in surface waters appears to be rapid compared with volatilization. In surface waters, as in the atmosphere, alkanes such as n-hexane would be resistant to hydrolysis. Biodegradation is probably the most significant degradation mechanism in groundwater. The ability of Pseudomonas mendocina bacteria to metabolise n-hexane in laboratory microcosms simulating groundwater conditions has been documented. Mixed bacterial cultures as well as pure cultures are documented as capable of metabolizing n-hexane under aerobic conditions. In general, linear alkanes (such as n-hexane) are viewed as the most readily biodegradable fractions in petroleum, particularly when oxygen is present in solution. Once introduced into groundwater, n-hexane may be fairly persistent since its degradation by chemical hydrolysis is slow and opportunities for biodegradation may be limited under anoxic conditions or where nutrients such as nitrogen or phosphorus are in limited supply. Sediment and Soil: The most important biodegradation processes involve the conversion of the n-hexane to primary alcohols, aldehydes and, ultimately, into fatty acids. Similar processes are encountered with other light hydrocarbons such as heptane. In general, unless the n-hexane is buried at some depth within a soil or sediment, volatilisation is generally assumed to occur at a much more rapid rate than chemical or biochemical degradation processes. Once introduced into deeper sediments, n-hexane may be fairly persistent. #### Ecotoxicity: Fish LC50 (96 h): Oncorhyncus mykiss 4.14 mg/l; Pimephales promelus 2.5 mg/l (flow through); Lepomis macrochirus 4.12 mg/l Daphnia EC50 (48 h): 3.87 mg/l DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |--------------------|---------------------------|-----------------------------| | methylene chloride | LOW (Half-life = 56 days) | HIGH (Half-life = 191 days) | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |--------------------|-----------------| | methylene chloride | LOW (BCF = 40) | #### Mobility in soil | Ingredient | Mobility | |--------------------|-------------------| | methylene chloride | LOW (KOC = 23.74) | #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - Reuse - Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. Product / Packaging disposal - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Consult State Land Waste Management Authority for disposal. - Discharge contents of damaged aerosol cans at an approved site. - Allow small quantities to evaporate. - DO NOT incinerate or puncture aerosol cans - ▶ Bury residues and emptied aerosol cans at an approved site. # **SECTION 14 TRANSPORT INFORMATION** # **Labels Required** # **Marine Pollutant** 2Y **HAZCHEM** ## Land transport (ADG) | UN number | 1950 | |----------------------------|-----------------------| | UN proper shipping name | AEROSOLS | | Transport hazard class(es) | Class 2.1 Subrisk 6.1 | | Packing group | Not Applicable | Version No: **3.1.1.1** # Aerosolve Spray Adhesive 302, 350g Aerosol Issue Date: **19/03/2014**Print Date: **28/03/2018** | Environmental hazard | Environmentally hazardous | | |------------------------------|---|--| | Special precautions for user | Special provisions 63 190 277 327 344 Limited quantity 120ml | | # Air transport (ICAO-IATA / DGR) | UN number | 1950 | | | | |------------------------------|---------------------------------|---|------------------------------|---| | UN proper shipping name | Aerosols, flammable, cor | ntaining substances in Division 6.1, Pack | ring Group II; Aerosols, fla | ammable, containing substances in Division 6.1, Packing Group | | | ICAO/IATA Class | 2.1 | | | | Transport hazard class(es) | ICAO / IATA Subrisk | 6.1 | | | | | ERG Code | 10P | | | | Packing group | Not Applicable | | | | | Environmental hazard | Environmentally hazardor | us | | | | | Special provisions | | A145 A167 A802 | | | | Cargo Only Packing Instructions | | Forbidden; 203 | | | | Cargo Only Maximum | Qty / Pack | Forbidden; 150 kg | | | Special precautions for user | Passenger and Cargo | Packing Instructions | Forbidden; 203 | | | | Passenger and Cargo | Maximum Qty / Pack | Forbidden; 75 kg | | | | Passenger and Cargo | Limited Quantity Packing Instructions | Forbidden; Y203 | | | | Passenger and Cargo | Limited Maximum Qty / Pack |
Forbidden; 30 kg G | | # Sea transport (IMDG-Code / GGVSee) | UN number | 1950 | | |------------------------------|---|--| | UN proper shipping name | AEROSOLS | | | Transport hazard class(es) | IMDG Class 2.1 IMDG Subrisk 6.1 | | | Packing group | Not Applicable | | | Environmental hazard | Marine Pollutant | | | Special precautions for user | EMS Number F-D, S-U Special provisions 63 190 277 327 344 381 959 Limited Quantities 1000ml | | # Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # **SECTION 15 REGULATORY INFORMATION** # Safety, health and environmental regulations / legislation specific for the substance or mixture # METHYLENE CHLORIDE(75-09-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Part 2, Section Seven - Appendix I Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs # HYDROCARBON PROPELLANT(68476-85-7.) IS FOUND ON THE FOLLOWING REGULATORY LISTS | Australia Exposure Standards | Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix | |--|---| | Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals | E (Part 2) | | Australia Inventory of Chemical Substances (AICS) | Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule | | | 5 | | National Inventory | Status | |-------------------------------|--| | Australia - AICS | Y | | Canada - DSL | Y | | Canada - NDSL | N (hydrocarbon propellant; methylene chloride) | | China - IECSC | Υ | | Europe - EINEC / ELINCS / NLP | Υ | | Japan - ENCS | Y | Chemwatch: 4698-60 Page 14 of 14 Issue Date: 19/03/2014 Version No: 3.1.1.1 Print Date: 28/03/2018 # Aerosolve Spray Adhesive 302, 350g Aerosol | Korea - KECI | Y | |---------------------|---| | New Zealand - NZIoC | Y | | Philippines - PICCS | Y | | USA - TSCA | Υ | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | # **SECTION 16 OTHER INFORMATION** #### Other information # Ingredients with multiple cas numbers | Name | CAS No | |------------------------|--------------------------| | hydrocarbon propellant | 68476-85-7., 68476-86-8. | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index